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Use of first and second derivatives to accurately determine
key parameters of DSC thermographs

in lipid crystallization studies
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Abstract

In this study, an objective method to provide sufficiently unbiased analysis of raw DSC data, using the calculated first and second derivatives
in combination with error analysis is described and applied to analyze thermograms of lipid samples. A statistical method based on a closer study
of the residuals of fit and data correlation techniques with adequate criterion for the goodness of fit has proven to be valuable in evaluating the
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xperimental error. The derivatives were utilized to define unambiguously the key signal characteristics, such as minima, maxima, as
nd start points of thermal events, with uncertainties directly related to the actual noise of each signal. By estimating the pure experim
nd data correlation length, we have been able to have a better appreciation of the quality of the experimental data and detailed inf
ur DSC system. The calculated errors using 15 runs for the same sample were consistent with the estimated standard deviations gen
tatistical analysis.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Use of the DSC as an analytical, diagnostic and research
nstrument is ubiquitous in the lipid literature. It is an efficient
ool widely and commonly used, for example, for “fingerprint-
ng” and in materials research. Information, such as peak posi-
ions, widths, areas, heights and shapes of the peaks are routinely
xtracted from DSC thermograms and used as appropriate. A
SC thermogram is often complex, because various modes of
rystallization, solid-state transformations and melt-mediated
ransformations could be involved and contribute to a single
eak. Users of DSC usually rely on the software which accom-
anies the purchase of the equipment for the handling of the
utput data. However, the determination of some key elements

s visually (manually) obtained for subsequent calculations. As

∗ Corresponding author. Tel.: +1 780 492 9081; fax: +1 780 492 8855.
E-mail addresses: laziz.bouzidi@ualberta.ca (L. Bouzidi),

uresh.narine@ualberta.ca (S.S. Narine).
1 Tel.: +1 780 492 2871.

an example, in the most recent TA Instruments analysis sof
currently in use, the “TA Universal Analysis 2000”, all the k
starting points for analysis are dependent on operator ch
Visual examination is inherently subjective, fraught with p
sible errors of interpretation, and thus, different analysts (
the same analyst analyzing the data twice) might come to d
ent conclusions from the same data plot. Evidently, an unb
determination of the main features of a DSC thermograph sh
start by eliminating the variability introduced by the operato
more rigorous approach in dealing with output data and a
at the reduction of the variability on the data analysis, suc
that proposed by Foubert et al.[1], who have developed a calc
lation algorithm for the start and end points of a thermal ev
to determine the integration limits of DSC crystallization sig
is a necessary alternative.

In this paper, we will describe an objective method to
vide sufficiently unbiased analysis of raw DSC data, using
calculated first and second derivatives in combination with e
analysis. Furthermore, we make use of statistical analys
extract information on the errors associated with the data, d
unambiguously the signal characteristics, such as minima,
040-6031/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
oi:10.1016/j.tca.2005.09.013
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ima, as well as end and start points, and apply the method to
analyze thermograms of lipid samples.

2. Experimental method

The crystallization and melting experiments were performed
on a “TA 2920 Modulated DSC” system (TA Instruments, New
Castle, DE, USA). Dry nitrogen was used to purge the thermal
analysis system. A relatively pure (97%) 1,3-dimyristoyl-2-
stearoylglycerol (MyStMy) triacylglyceride (TAG) was exten-
sively investigated for the application of the method. Myristic
and lauric binary systems used in our laboratory by Boodhoo
and Narine[2] for a study of phase behavior of binary lipid sys-
tems have also been used to illustrate the method outlined in this
paper. The lauric binary systems are a mixture of 1,3-dilauroyl-2-
stearoylglycerol (LaStLa) and 1,2-dilauroyl-3-stearoylglycerol
(LaLaSt) TAGs and the myristic binary systems are a mixture
of MyStMy and 1,2-dimyristoyl-3-stearoylglycerol (MyMySt)
TAGs. The purity of the individual TAGs was greater than 97%.

The samples were hermetically sealed into aluminum pans
and an empty pan was used as a reference. The DSC thermogram
of an empty pan was recorded prior to the sample measure-
ments at the same conditions as the sample. The baselines were
recorded before every new set of experiments, at the start of the
day if running experiments overnight and after a new scan rate.
The mass of each sample was within 13.0± 0.1 to 14.0± 0.1 mg.
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Fig. 1. Melting curves of MyStMy:MyMySt (40:60, w/w) binary system
obtained with a melting rate of 5◦C/min after crystallization at different rates.
Curve (a) after a crystallization rate of 0.1◦C/min and curve (b) after a crystal-
lization rate of 3◦C/min.

rials (including lipids) incorporating DSC experimental data but
with a few exceptions, not much attention has been paid to the
quantitative description of DSC thermograms, an essential step
if the models are to be used predictively[3–6].

A DSC thermogram is a complex combination of super-
posed thermal phenomena. DSC thermograms are particularly
complex in the case of lipids even for simple triglyceride mix-
tures, where melt-mediated transformations between metastable
phases can complicate the melting event. Such melt-mediated
transformations themselves being dependent on the thermal his-
tory of the sample as illustrated inFig. 1.Fig. 1shows the melting
curves of the binary system MyStMy:MyMySt (60:40, w/w)
obtained with a melting rate of 5◦C/min after processing with
two different crystallization rates. For a crystallization rate of
0.1◦C/min (curve (a)), only a single melting peak centered at
51.5± 0.1◦C appeared, whereas at a rate of 3◦C/min (curve
(b)), two distinct melting peaks (35.3± 0.1 and 51.5± 0.1◦C,
respectively) appeared separated by a melting-mediated crystal-
lization at 37.1± 0.1◦C. In general and apart from the single and
well defined line of a pure element in its most stable polymor-
phic state (or of an element not demonstrating polymorphism), a
clear definition–description of discriminated events of the signal
is not obvious.

The background-baseline which is due to complex contribu-
tions of the thermal behavior of the material and the apparatus
is an unavoidable component of the signal. However, functions
d effi-
c trated
i My
s
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he data sampling and temperature control procedures
ully automated and controlled by the “TA Instrument Contr
oftware program. For all the samples, if not stated other
he procedure was as follows. Initially, the sample was ke
0◦C for 20 min to reach steady state and then was heat
0◦C at a rate of 5◦C/min and kept there for at least 5 m

o erase its thermal history. To record the crystallization cu
he sample was cooled down at constant rate (depending
xperiment) to−5◦C and kept at this temperature for 20 min
llow for the completion of crystallization. The sample was t
eated to 90◦C at a constant rate of 5◦C/min to record the mel

ng curve. MyStMy (13.4± 0.1 mg) was run 15 times to test
eproducibility (it was equilibrated at 90◦C, then crystallize
ith a rate of 3◦C/min to−5◦C, where it was kept for 20 m
nd then melt at a rate of 5◦C/min up to 90◦C).

In this paper, the exothermic signals from DSC are repo
n the upward direction.

. The analysis method

To extract accurate information from a raw signal, we
ssess the level of “error” associated with the data by calc

ng its standard deviation (S), compute the derivatives and
se them to find the signal characteristics, such as the ma
inima and inflexion points, and find the starting and en
oints of the event.

.1. Data analysis, modeling limits and real spectrum

The scientific literature is replete with models and theore
evelopments of thermodynamic and kinetic behavior of m
-

a,

-

escribing the pre- and post-transition baselines are very
ient tools which can help to assess the overall noise as illus
n Fig. 2.Fig. 2(a) shows the melting curve of the pure MySt
ample, crystallized at a rate of 1◦C/min and melted at 5◦C/min
ith its pre- and post-transition baselines (y1 and y2, respec

ively) fitted with straight lines (R2 was 0.998 and the standa
rror of estimates was 0.002 for both sections).Fig. 2(b) high-

ights the post-baseline (60–90 min interval) and highlights
ery good fit obtained.Fig. 2(c) shows the residuals which
ess than three times the standard deviation.
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Fig. 2. (a) Melting curve of the pure MyStMy sample, crystallized at a rate
of 1◦C/min and melted at 5◦C/min with its pre- and post-baselines (y1 andy2,
respectively) fitted with straight lines; (b) zoom on the post-baseline (60–90 min
interval); (c) residuals of fit.

Ideally, a pure signal starts at time zero with a zero amplitude
value and increases (or decreases, depending on whether it is
endotherm or exotherm) as time increases, reaches its maximu
(minimum) and dies out at infinity. Practically, the range where
the “event” is measured is finite and the extent of its tails depend
on the experimental conditions and DSC system performances
A signal without the baseline is considered a real thermal even
if it is larger than the noise associated with the signal. To reduce
the variability on the data and accurately define the start and en
points, the analysis should start and end as far as possible fro
the extrema of the peaks.

3.2. Assessing the “noise”

In any experimental bivariate set of data{x,y}, noise is man-
ifest in the spectrum onx or y alone by random errors, drifts
or systematic errors. The first step of the analysis method is
to assess accurately the noise. “Fitting” procedures are a com
mon means of extracting it from raw data. When we approxi-
mate two-dimensional data containingn experimental points (xi,
yi)i=1, . . ., n by a smooth curve [x,f(x)] to the unknown realityg(x),
the measured data are supposed to contain a noise componenδi

in yi so that:

fi = g(x) + δi (1)

The fitting procedures are primarily based on computing of
the sum of squares of the residuals which are the difference
between the data and the fitting function. The classical fitting
strategy consists of minimizing the so-called Chi-square (χ2)
[7]:

χ2 =
n∑

i=1

d2
i (2)

where the normalized residualdi is:

di = yi − f (xi)

σi

(3)

σi is the standard deviation of the uncertaintyδi associated with
the experimental datayi. The standard deviationS is defined as
the root-mean-square of the residuals between observedyi and
calculatedycalc

i values:

S =
√√√√ 1

n − 1

n∑
i=1

(yi − ycalc
i )

2
, with i = 1, · · · , n (4)

The statistical analysis of the residuals and the standard devi-
ation associated with a data set leads to a quantification of its
associated experimental error and of the correlation between
data points[8] as in the so-called Durbin–Watson (DW) statistic
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i s the
c prior
k stics
o f the
n s
o d
a tistic
w e, for
e

vel-
o
a of
i s) to
c oise.
T d to
c ud-
i an be
f h
a ntial.
I :

Q

ξ r
c
e can
a

an
m

s
.
t

d
m

-

t

9–11]. The DW statistics is the basis of several good algori
n physical data treatment and is very effective. It also ha
onsiderable advantage of its relative insensitivity to the
nowledge of the experimental uncertainties. The DW stati
utcome is much more insensitive to user misjudgments o
oise magnitude than if theχ2 is used, as theχ2 value depend
n the estimate of the measurement errors[12]. Sophisticate
pproaches to analysis of residuals combining the DW sta
ith other statistical tests can be found in the literature (se
xample[13–15]).

To fit the data, we have used a powerful method de
ped by Thijsse et al. and first published in 1998[16]. In their
pproach, thex-interval is divided up in a certain number

ntervals and uses piecewise polynomial functions (spline
onstruct a smooth curve through data points containing n
he break points (or knots) distribution is optimized and use
ontrol the flexibility. The latest version of their software, incl
ng the program source, executable and user manual, c
reely downloaded from Thijsse’s website[17]. Their approac
ssumes that the correlation function is a decaying expone

t uses the so-called generalized DW statistics, defined as

m(ξ) = n − 1

n − m

∑n−m
i=1 (di+m − di)2∑n

i=1(di)2

+ 2(n− 1)

n(n − m)

n−m∑
i=1

e−(xi+m−xi)/ξ (5)

is the assumed correlation length in the data andm is an intege
haracterizing the extent of imposed correlation.m is taken large
nough so thatdi anddi+m are not correlated, and therefore,
ccount for the correct noise component.



L. Bouzidi et al. / Thermochimica Acta 439 (2005) 94–102 97

There are two possibilities to work with the spline program.
One is to do an automatic search of autocorrelation using a
statisticQ̄(ξ) that is m-averaged over the relevant part of the
autocorrelation:

Q̄(ξ) = 1

mmax

mmax∑
m=1

Qm(ξ) (6)

with

mmax =
[

3(n− 1)ξ

xn − x1
+ 3

]
. (7)

The other possibility is to fixm andξ at any value during the fit
and useQm(ξ) as statistic.

Both possibilities have been used to fit the data without
experimental uncertainty values as they were not available. Due
to the great flexibility of the polynomial function, however, a
significant “overfitting” has been experienced, and therefore,
led to an underestimation of the noise with all the DSC data
analyzed for this study when an automatic search for correlation
was used. The generalized DW statisticsQm(ξ) with a fixed m
and a careful choice of the correlation length were necessary
to achieve a good estimation of the experimental error. Care
was taken to ensure that the algorithm recognizes the correct
noise component and that the generalized DW parameter was
as close as possible to its theoretical value of 2.00. All the DSC
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3.4. Utilizing the derivatives of thermograms in association
with S

The first and the second derivatives are used according to
the level of noise associated with them. Strictly, a measurement
minus the baseline is considered an actual event (i.e. the fea-
ture is not “noise”) when its value is larger than the standard
deviation attached to the signal. In order to accommodate for
unforeseen sources of errors and ensure that no spurious event
is mistaken for a real feature, the signal is considered as “noise”
or “zero event” when its value is less than 2S. Accordingly, the
values of first and second derivatives are assumed greater than
zero when they are greater thanS′ = 2

√
2 × S and greater than

S′′ = 2
√

6 × S, respectively. This is reasonable since the resid-
uals have always been found less than two times the calculated
standard deviation in the end and start of the event regions. 2S,
S′ and S′′ will be called the “departure value” (Dv) from the
DSC signal, first derivative signal and second derivative signal,
respectively. Note that the baseline was subtracted when using
the DSC signal. In the case of DSC thermograms, second deriva-
tives are data treatment of choice because they flatten to zero the
baseline at the start and at the end of the cycle. However, sec-
ond derivatives have reduced signal over noise compared to first
derivative, give rise more frequently to spurious features and are
hard to interpret in regions where the signal changes rapidly. The
second derivative is therefore used in conjunction with the first
d
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ata collected by our system were satisfactorily fit usingm = 3
nd appropriateξ values. Physically meaningful derivativ
ith relatively very few artifacts were evaluated using this
rocedure.

.3. Calculating the derivatives

Several methods have been developed to calculate
erivatives of noisy data. The most popular methods us
o-called Savitzky–Golay convolution functions (the orig
avitzky–Golay paper[18] was cited 3885 times). Howev

he computation increases the standard deviation of the
ontribution and depending on how the derivatives are
ulated, they could generate artifacts without any rela
hips with the true spectral features[19]. Moreover, the valu
f the second derivative is roughly an order of magnit
maller than the first derivative which induces a degr
ion of its signal (i.e. the value of the derivative here) o
oise by the same factor. If a random variable is multip
y a constant (c, say), then the variance of the produ

ncreased by a factor ofc2 (Mark and Workman[20]). Since
he second derivative calculation is equivalent to using c
cients 1, −2 and 1 as multipiers for three data points
he desiredx-spacing, the standard deviation of the no
ontribution to a second derivative is

√
6 greater than th

oise of the spectrum. Similarily, the noise contribution
rst derivative is

√
2 greater than the noise of the spectr

21].
To calculate the derivatives, we have used both Tijsse’s

are and SigmaPlot software V9 for Windows (SPSS
hicago, IL, USA).
e
e

e

-

erivative.
The start and end points of thermal events were determ

y tracking the “departure value” (Dv) starting from the zero (o
he DSC signal, the first or second derivative). The start (or
f the event was the average of the range where the signa
bsolute value strictly larger than zero +Dv and strictly smalle

han zero +2Dv. The error associated with its determinatio
he extent of the range itself.

The derivatives are also used as a practical procedu
ssessing the instrument resolution by quantitatively iden

ng resolved events and locating shoulders which could n
iscriminated by other means, such as the van Ekeren reso
riterion of identifying caloric events[22]. The van Ekeren re
lution criterion (or resolution factor)R as redefined and us
y Marti et al.[23] does not account for weak shoulders eve

hey are apparent. It is defined as:

= hpeak

hmin
(8)

herehmin is the minimum between two caloric events andhpeak
s the peak height of the second (weak) transition.Fig. 3 con-
ains three different cases of overlapping contrived DSC cu
he first case (Fig. 3(a)) can be quantitatively described
= 1.25. The second case (Fig. 3(b)) with a prominent sho
ivesR = 1 and is the limit which can be quantitatively descri
ith the parameterR. The quantitative determination of the r
lution factor according to Eq.(7) is not possible in the last ca
Fig. 3(c)) where overlapping phenomena are clearly visible
ithout a minimum in between.
The first and second derivatives define precisely the

ions of the resolved single peaks and partially separated p
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A point in the signal is a minimum (maximum) at the posi-
tion where the first derivative intersects with thex-axis and
where the second derivative has a maximum (minimum). For
the weakly resolved peaks, the first derivative shows with an

F
w
w
R
m
a

inflexion point, observable between the succession of a mini-
mum and a maximum, and the second derivative shows with an
extremum between them.

The x-accuracy region (time or temperature) of such
determined points is taken as the domain where its value com-
prised within an absolute error ofS. All signal characteristics
determined with the two above definitions are unique. For
example, the starting temperature of a thermal event will be
determined as the average between the temperature at which
the signal starts strictly to depart from “zero” (T0(0)) and the
temperature at which the signal is zero plus a standard deviation
Ts(0 +S) with an accuracy equal to half the difference between
T0(0) andTs(0 +S). Section4 demonstrates that this is amply
justified.

3.5. Synopsis of the method

Starting from the raw DSC Data spline was run both

• with automatic search of autocorrelation;
• usingQm(ξ) as statistic: fixem (in our case,m = 3) andξ at

values which give the best DW statistics, starting with the
average response time of the system.

The results obtained were:

1

2
3 with
ig. 3. Three different cases of overlapping contrived DSC curves: (a) case
here resolution can be quantitatively described with parameterR; (b) case
ith a prominent shoulder which can be quantitatively described with the limit
= 1; (c) case where overlapping phenomena are clearly visible but without a
inimum in between. The quantitative determination of the resolution factor
ccording to Eq.(7) is not possible in this case.
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. the “best” value ofξ, the DW statistics, the rms (Sas no
experimental uncertainties were supplied);

. the spline approximation data set;

. the extrema and inflexion points which were evaluated
the evaluation function of the software;

. the first and second derivative data sets.

The results were used as follows:

sort out maxima, minima and inflexion points by compa
to the actual thermogram;
locate the end and start of an event using the computed d
tives by:

Defining the linear trend of signal: use of the first deriva
to locate the baselines left and right of the peak, it is w
the first derivative of the linear tails of the signal are
than or equal to 2

√
2 × S off its constant value.

Locating where the event departs strictly from zero
start or the end of the event) with the second derivativ
is where the second derivative departs strictly fromDv(=
2
√

6 × S). If not possible with the second derivative,
first derivative is used the same way withDv = 2

√
2 × S.

If not possible with the first derivative, the data set of
heat flow minus the baseline is used withDv = 2 × S.
Defining the temperature range where the absolute va
the second derivative (first derivative or heat flow sig
in the range fromDv (time t1 and temperatureT1) to Dv +
Dv/2 (time t2 and temperatureT2). The temperature wa
taken as the average temperature of the temperature
and the error attached to it equal to half the magnitud
the temperature range (T2 − T1)/2.
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• the spline was used:
to integrate the signal above the sigmoidal baseline, using
the start and end points;
to obtain the integral the peak height, the full width at half
maximum (FWHM) of the peak and eventually the onset
of the event.

4. Results and discussion

The baseline recorded with two empty pans for our system
was a straight line in the domain where the thermal events of
interest are studied. It has slightly different slopes for the heating
process and the cooling process (0.006± 1.0× 10−4 W/(g◦C)
against 0.004± 1.0× 10−4 W/(g◦C), respectively). The sub-
traction of the baselines did not introduce any measurable dis-
tortion on peak characteristics in any of our thermograms.

Fig. 4 presents an actual DSC crystallization curve of 1,2-
distearoyl-3-palmitoylglycerol (PaStSt) TAG (97% pure) crys-
tallized at a rate of 1◦C/min with a visible overlapping phe-
nomenon which cannot be treated withR and the use of the
derivatives is shown to discriminate them. The first derivative
locates accurately the apparent maximum where it intersects the
x-axis (arrow (1)) and evidences the inflexion point between
a maximum and a minimum in the first derivative (arrow (2)).
The second derivative precisely locate the inflexion point (arrow
( ◦ rent
o t
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Fig. 5. Melting curve of a 20% LaStLa/LaLaSt sample crystallized at a rate of
0.1◦C/min and fit with polynomials (splines) functions, classical DW statistics
(Q1) and an automatic search of autocorrelation. (a) Enlarged region [7–10 min]
of the curve where the variations of the heat flow with time were small. The
approximating curve was obtained using 180 polynomials (179 knots) of order
3. (b) The main curve. (c) The residuals of fit. The signal over noise ratio (S/N)
is greater than 104+. The horizontal dashed lines in the figure are a guide to help
locate the zeros of the derivatives.

the variations of the heat flow with time were small as seen in
the enlarged region [7–10 min] ((Fig. 5(a)) circled and shown
above the main curve). The residuals as shown inFig. 5(c) are
very small and the subsequent calculated signal over noise ratio
(S/N) is still very large (greater than 104+) even for the region
where the heat flow varies very rapidly with time.

As shown in Fig. 6, the crystallization curve of a pure
MyStMy sample (crystallized at a rate of 5◦C/min), when fit
using the automatic search, generated a very small correlation
length (ξ= 0.001◦C) and a large optimized number of knots of
446 (Fig. 6(a)). The calculated standard deviation (0.0003) was
visibly not a correct assessment of the experimental noise as
shown in the 30 min “flat” portion of the curve (Fig. 6(b)). The
portion was fitted with 179 knots and it is obvious that even the
noise has been fitted. When the generalized DW statistic with
fixed m = 3 andξ (ξ = 0.05◦C) statistics was used as shown in
Fig. 6(c) for the same portion of the curve as inFig. 6(b), a
smaller number of knots (32) led to a correct fit of the data.
As can be seen, the fit-curve follows the “true baseline” behav-
ior instead of tracking the noise. The peak itself was fit with
residuals less than three times the calculated standard deviation.

The standard deviation associated with temperature measure-
ment was estimated by fitting the temperature versus time (T(t))
curves for isothermal portions of the DSC experiments as well
as for constant heating or cooling rates. It was also calculated
from heat flow versus time curves in the regions with no ther-
m
M
a he
t rrow
3) at 41.7 C) and discriminates between two possible diffe
verlapping thermal events (arrow (4) at 43.7◦C and arrow (5) a
5.1◦C). The first and second derivatives of the signal show

ectly the positions of major inflexions in the signal and loc
bvious overlapping contributions. The horizontal dashed

n the figure are a guide to help locate the zeros of the deriva
Fig. 5(b) showing the fit of a melting curve of a 20% LaS

n LaLaSt (w/w) sample crystallized at a rate of 0.1◦C/min
nd melted at a rate of 5◦C/min illustrates the effectivene
f the spline software. In this case, the automatic searc
utocorrelation was used, produced an approximating cur
80 polynomials (179 knots) of order 3 with a DW statis
f 2.01, close to the theoretical value. The fit followed clo

he raw signal, particularly, dramatically in the region wh

ig. 4. Actual DSC crystallization curve of a pure PaStSt TAG crystallized
ate of 1◦C/min with a visible overlapping phenomenon which cannot be tre
ith R. The first derivative is shown to discriminate them.
al event.Fig. 7 shows a typical example of aT(t) curve of a
yStMy sample heated to a final set-temperature of 90◦C at
rate of 5◦C/min and left at this temperature for 30 min. T

emperature was effectively stabilized in about 18 min (a
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Fig. 6. (a) Crystallization curve of a pure (97%) MyStMy sample crystallized
at a rate of 5◦C/min fit usingQ1. The correlation length isξ = 0.001 and the
optimized number of knots is 446. (b) The 30 min portion of the curve fitted
using Q1 statistics. Number of knots is 179 knots and the correlation length
ξ = 0.001. (c) Same flat portion as in (b) fitted usingQ3 statistics. Number of
knots is 32 knots and the correlation lengthξ = 0.05.

(1)). It dropped by only 0.2◦C and the peak-to-peak noise was
equal to 0.02◦C underlining the effectiveness of the tempera-
ture controller. The residuals had a nearly periodical pattern and
were evenly distributed around zero with extrema less than 2S
as pointed out by the dashed lines inFig. 7(b). The calculated
first derivative departs from zero (as outlined in Sections3 and 4)
exactly where the value ofT is above half the point-to-point (ptp)
noise (arrow (2)). The average standard deviations and correla-
tion lengths obtained for the flat parts of the DSC thermograms
are listed inTable 1.

Fig. 8examplifies the treatment of start and end points of ther-
mal events. It shows an enlarged region of the melting curve of

Table 1
Correlation length, standard deviation and point-to-point noise (ptp) for the
temperature and heat flow in the regions of the thermograms where there we
no peaks

Correlation length (min) Standard deviation ptp noise

T(t) 0.01 0.008 0.02
H(t) 0.07 0.01 0.04

Fig. 7. (a and b) Temperature vs. timeT(t) curve and its first derivative for a
MyStMy sample heated to a final set-temperature of 90◦C at a rate of 5◦C/min
and left at this temperature for 30 min. The residuals are plotted below in standard
deviation units. The dashed lines are a guide for the eye to locate the zero of the
derivative and the peak-to-peak noise associated with the temperature in the flat
region [20 and 30◦C].

a pure (97%) MyStMy sample crystallized at a rate of 3◦C/min
and melt at a rate of 5◦C/min and its first derivative (the entire
melting curve and its first derivative is shown in the upper left
corner of the figure), the arrow (1) directs to the point where the
first derivative departs from “zero”, i.e. 1Dv and the arrow (2)
directs to the end of the temperature determination range, i.e.
2Dv.

The temperatures of start and of end of thermal event for the
individual runs were determined within an average of±0.05◦C
accuracy for crystallization and of±0.08◦C accuracy for melt.
The maxima and minima of the signals have been determined
with average uncertainties of 0.1◦C. The start and end points
for the 15 identical runs of the crystallization and the melting of
the MyStMy system were determined using the method outlined

F lized
a e
e er of
t of the
d

re

ig. 8. Enlarged region of the melting curve of a MyStMy sample crystal
t a rate of 3◦C/min and melt at a rate of 5◦C/min and its first derivative. Th
ntire melting curve and its first derivative are shown in the upper left corn

he figure. The long-dashed line is a guide for the eye to locate the zero
erivative.
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Table 2a
Characterization of the crystallization peak

15 runs Tmax (◦C) FWHM (◦C) Height (W/g) Area (J/g) Start of crystallization (◦C) End of crystallization (◦C)

Mean 32.437 2.783 2.635 170.614 23.43 36.34
Standard deviation 0.034 0.018 0.009 1.623 0.15 0.12
Standard error 0.009 0.005 0.002 0.434 0.04 0.03

above. The average correlation length used to fit the data was
70 s which is roughly equal to the average response time of 65 s
of the DSC pans.

The areas under the signals were calculated using the TA
Universal 2000 software and the SigmaPlot software V9 for
Windows (SPSS Inc., Chicago, IL, USA) feeding them with the
starting and ending points determined with this method. The
integrations under curves were performed using the trapezoidal
rule. A sigmoidal baseline initially is calculated as a straight line
from peak start to peak end. It is then recalculated for each data
point between the peak limits as the weighted average between
the tangent baselines at peak start and end. The weighting factors
for a given point are: (1) one minus the fraction reacted (alpha)
times the initial baseline and (2) alpha times the final baseline.
The area is then recalculated with the new baseline. If the new
area differs from the previous area by more than 1%, the area
is recalculated and the sigmoidal curve shifted repeatedly until
two consecutive calculations of the area differ by no more than
1%.

As expected, the two calculations yielded exactly the same
results for the same curves. The results are reported inTable 2a
for the crystallization peak,Table 2bfor the melting peak and
Table 2cfor the crystallization peak mediated by melt. The
individual start and end temperatures were determined with
accuracies comparable to the repeatability errors listed in the
tables and individual determination of the minima and maxima
w r the
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u g
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r t
d o a
s scale
o

ersus
t start
a rmic
p pro-
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t type
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Fig. 9. (a) Temperature vs. timeT(t) and heat flow vs. time of the exothermic
process occurring for the MyStMy sample crystallized with a programmed rate
of 3◦C/min, and their respective first derivatives with respect to time. (b) Tem-
perature vs. timeT(t) of endothermic process at a programmed heating rate of
5◦C/min of the same sample as in (a) as well as the first and second derivatives
curves of the temperature with respect to time.

its flow rate[24]. During the event, the time dependence of the
experimental heating or cooling rate follows very closely the
time dependence of the heat flow. The derivatives of theT(t)
curves are easier to compute and any deviation to the set linear
trend appears clearly.Fig. 9(a) shows the heat flow curve and its
first derivative with respect to time for the MyStMy sample crys-
tallized with a programmed rate from 3 to 20◦C/min with the
influence of the exothermic process on the cooling rate.Fig. 9(b)

T
C

1 t (W/g) Area (J/g) Start of melt (◦C) End of melt (◦C)

M 180.55 31.67 68.83
S 0.756 0.17 0.20
S 0.308 0.07 0.073
ith errors smaller than those related to repeatability. Nea
xtrema of the peaks where the slopes are the steepest, the
als are in average less than four timesS and have alternatin
igns with relatively the same periodicity. The signal over n
atio is still very large (approximately 104). This is probably no
ue to poor “piecing” of the curves into polynomials but t
tronger dependency of the sensitivity of the system on the
f the thermal event.

The constant heating and cooling rates (temperature v
ime curves) are another powerful tool to determine the
nd end of a caloric event. When endothermic or exothe
rocesses occur, the instrument cannot follow exactly its
rammed temperature but adjusts more or less dependi

he rate itself and other experimental factors, such as the
f instrument, the mass of the sample and the purge ga

able 2b
haracterization of the melting peak

5 runs Tmin (◦C) FWHM (◦C) Heigh

ean 55.517 5.952 2.345
tandard deviation 0.040 0.023 0.007
tandard error 0.016 0.009 0.003
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Table 2c
Characterization of the crystallization peak induced by melt

15 runs Tmax (◦C) FWHM (◦C) Height (W/g) Area (J/g) Onset of crystallization (◦C)

Mean 44.432 5.432 0.269 18.594 38.99
Standard deviation 0.037 0.062 0.004 0.306 0.04
Standard error 0.015 0.025 0.002 0.125 0.02

shows an example of the influence of endothermic process on
the experimental temperature at a programmed heating rate of
5◦C/min of the same sample and shows the plot of the first
and second derivatives of the temperature with respect to time.
In both cases, the derivatives of the temperature change and of
the heat flow show the same trend and yielded the same values
for the start and end of the caloric event within±0.05◦C. The
detailed results of the study of the DSC temperature behavior
during a caloric event are to be published elsewhere.

5. Conclusion

The method based on analysis of the residuals of fit and the
use of first and second derivatives used on DSC thermogram of
lipid system was very efficient and yielded accurate and unbi-
ased results. The statistical method based on a closer study of
the residuals of fit and associating data correlation techniques
with adequate criterion for the goodness of fit has proven to be
useful in evaluating both the experimental error and the model
bias. By estimating relatively accurately the pure experimental
error and data correlation length, we have been able to have a
better appreciation of the quality of the data and detailed infor-
mation on our DSC system. The errors inherent to the DSC
system were determined unequivoquely and the values of key
parameters, such as start and end of the thermal event, apparent
extrema and FWHMs were determined accurately with uncer-
t The
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